If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x)^2-0.444(x)-5=0
a = 1; b = -0.444; c = -5;
Δ = b2-4ac
Δ = -0.4442-4·1·(-5)
Δ = 20.197136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-0.444)-\sqrt{20.197136}}{2*1}=\frac{0.444-\sqrt{20.197136}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-0.444)+\sqrt{20.197136}}{2*1}=\frac{0.444+\sqrt{20.197136}}{2} $
| (x)^2-0.33(x)-3.75=0 | | 5x-3÷4=x-3÷2 | | x*x*x*x-1=0 | | (x)^2+1.33(x)-4=0 | | 4x+13=2x+15 | | x*4-1=0 | | (x-0.5)^2+1.33*x-4=0 | | 8x-6(x+4)=2 | | 80=2.222222222222222222222222222222x | | 0.75*(x-0.5)^2+(x-0.5)-2.5=0 | | -5x+x+5=25 | | -10=-14n+13n | | 0.75*(x-0.5)^2-(x-0.5)-2.5=0 | | 3m+8m=42 | | D=8.5t | | 0.75=1/3x | | -6d+5d=-11 | | 20=5x(2-x) | | 0.75*(x)^2-(x)-2.5=0 | | 20=10x-5x^2 | | 8x2=72 | | -3=x1/2 | | 3^t=4.6^t | | 9x-3=12-4x | | 7-13=4x | | 6+3m=10-5m+6m | | 12x-16=6x+2+4 | | 4a^2-17a-34=0 | | X+3=6-x-x^2 | | 2x²-7x-3=15 | | 2x-7x-3=15 | | -3-2(x-4)=2-(x-1) |